

# **Viscosity Measuring Device**

**Department of Mechanical Engineering** 

ME492 Senior Project – Spring 2021

Eda Gizem UZEL, Sarp AÇIKGÖZ, Ulvi Umut YAVUZLAR

Supervisor: Prof. Dr. Selin Aradağ Çelebioğlu, Co-advisor: Res. Asst. Oğuzhan Ulucak

### **OBJECTIVE**

Viscosity is the measure of resistance to deformation at a specific rate for fluid. Viscosity is equal to product of pressure and time. The general unit of it is Pascal\*seconds. (Pa.s) The objective is measuring the viscosity of Newtonian fluids.

## **LITERATURE SURVEY & THEORY**



Name of the Product: Viscosity Measuring Device **Purpose:** Measuring the viscosity of Newtonian fluids **Expectations:** Making viscosity measurements accurately and precisely as much as possible for Newtonian fluids

Main Components of Product: Spindle (Inner Cylinder), Beaker (Outer Cylinder), Platform



Shear Stress(Pa)

Viscosity remains constant at Newtonian fluids independently on shear stress applied on. Viscosity does not remain constant and is dependent on shear stress applied for the fluids which do not follow Newton's laws, are called as non-Newtonian fluids. Here, it will be dealt with Newtonian fluids such as water and glycerin. Figure.1 – Shear Stress vs Shear Rate

Table.1 – Advantages & Disadvantages of Viscometer Types

| Туре          | Advantages                                                           | Disadvantages                                                              |
|---------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|
| Capillary     | Low cost, high accuracy, ability to<br>work with high shear rates    | High residence time and variation<br>of shear across the flow              |
| Falling Ball  | Simplicity and cost-effectiveness                                    | Not effective for high viscosities                                         |
| Rotational    | High accuracy at both Newtonian<br>and non-Newtonian fluids          | End Effects can be a problem                                               |
| Rising Bubble | Affected minimally by the liquid while<br>measuring                  | Container geometry (complex)                                               |
| Orifice/Cup   | Works well and gives accurate<br>measurements for Newtonian fluids   | Not appropriate for rheological<br>measurements of non-Newtonian<br>fluids |
| Parallel Disk | High accuracy                                                        | Shear rate is not uniform                                                  |
| Cone & Plate  | Uniform shear rate can be obtained,<br>good for non-Newtonian fluids | High cost and eccentricity issues                                          |

Table shows the advantages and disadvantages of different viscometer types. Rotational viscometer is chosen since it gives accurate results for both Newtonian



Figure.2 – Final Design



Figure.3 – Viscosity Comparison

Sub-Components of Product: DC Motor, Motor holder, Arduino Uno, Arduino Shield, Motor Driver, IR Sensor, Current Sensor, Voltage Sensor

Viscosity comparison between actual data and calculated data is shown on the graph. As it is observed, this dataset is precise and accurate for gear oils.

#### **PRODUCTION SETUP**



#### and non-Newtonian fluids.



| Table.2 – ∧       | Iomenclature Table |  |
|-------------------|--------------------|--|
| Nomen             | clature Table      |  |
| μ                 | Viscosity          |  |
| Р                 | Power              |  |
| Ν                 | N rpm              |  |
| TNL               | No Load Torque     |  |
| ΤL                | Load Torque        |  |
| Rin               | Inner Radius       |  |
| Rout Outer Radius |                    |  |

## **COST ANALYSIS**

|                | Table.3 – Table of Costs        |           |
|----------------|---------------------------------|-----------|
| Material Type  | Material                        | Price     |
| Sensor         | Grove IR Sensor (V1.2)          | 52.76 TL  |
|                | Grove Current Sensor (ACS70331) | 70.37 TL  |
|                | Voltage Sensor                  | 5.78 TL   |
|                | Temperature Sensor (12V)        | 12.85 TL  |
| Motor          | DC Motor (12V 1800rpm)          | 15 TL     |
|                | Motor Holder (L 25D)            | 71.95 TL  |
|                | Motor Driver (L298N)            | 16.30 TL  |
|                | Motorobit Motor Cable           | 50.29 TL  |
| Arduino        | Arduino UNO R3                  | 216.25 TL |
|                | Arduino Cable                   | 4.80 TL   |
|                | Grove Base Shield (V2.0)        | 100.73 TL |
|                | DC Adaptor (12V 1A)             | 22.40 TL  |
| Fluid - Beaker | Glycerine                       | 28.99 TL  |
|                | Motor Oil                       | 50 TL     |
|                | Water                           | 2 TL      |
|                | Beaker (250 ml)                 | 18.19 TL  |
| Insulation     | Polyethylene Pipe               | 6.99 TL   |
| Other          | Swanson Works Sprey (400 ml)    | 35 TL     |
|                | Globe Electric Tape             | 3.34 TL   |
| Total Cost     |                                 | 783.99 TL |
|                |                                 |           |



Figure.4 – Physical Setup

Figure.5 – Cable Connections

Physical setup is completed. After that, sensor connections and motor connections are done in order to take data from the physical setup. Arduino connection diagram is completed by wokwi.com web site.



To conclude, the definition of viscosity and measurement techniques of viscosity are mentioned. Manufacturing of a rotational viscometer has been made and viscosity data have been taken by the device. By using a current sensor and a voltage sensor, current and voltage data are taken. By taking these data, electrical power of the system is acquired by the multiplication of current, voltage and



motor efficiency which is calculated by MATLAB code. By using an IR sensor, revolution per minute(rpm) of DC motor has been ready to use for viscosity calculation.

#### REFERENCES

- Cho, S., Nguyen, T., Miki, N., & Takahashi, H. (2020). PIPETTE BASED VISCOMETER WITH PRESSURE SENSOR ELEMENT. IEEE MEMS, pp. 646-648.
- Islam, R., & Rahman, M. (2014). Design, Construction & Performance Test of a Rotational Digital viscometer. International Conference on Mechanical, Industrial and Energy Engineering.
- Islam, R., & Rahman, M. (2016). A Coaxial Cylinder Type Rotational Viscometer- Design and Optimization. International Journal of Scientific & Engineering Research, 7(10), pp. 1792-1796.



SCAN ME